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ABSTRACT

The definition of fuzzy convexity is reviewed, and
some results on projections of convex and fuzzy-convex
sets are established. Digital fuzzy convexity is de-
fined, and relationships among alternative definitions
are investigated.
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1. introduction

Convexity was one of the first mathematical concepts

to be "fuzzified" when fuzzy set theory was initially

developed [1]. This paper reviews the concept and pre-

sents some results on projections of convex and fuzzily

convex sets. It also introduces the concept of digital

fuzzy convexity for sets of lattice points; this is a

"fuzzification" of digital convexity, which has been exten-

sively studied [2]. We deal here with (fuzzy) subsets of

the plane, or with planar lattice points, even though many

of the concepts introduced have immediate extensions to

higher-dimensional spaces.
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2. Fuzzy convexity

2.1 Basic concepts

Let E be the Euclidean plane; we recall [1] that a

fuzzy subset V of E is a mapping from E into [0,1]. The

value p(P) of v for a point PEE is called the degree of

membership of P in v. We say that V is (fuzzily) convex

if for all P,Q in E, and all R on the line segment F, we

have P (R)a 2P(P)A V(Q), where A means '!in" - in other words,

every point on PQ has degree of membership in v at least as

high as the lesser of the degrees of P and Q.

If v is a mapping into {0,1}, it is the characteristic
-i

function of a subset of E (namely, p. (1)); for brevity,

we speak of such a p as "being" a subset of E. Evidently,

a subset p is fuzzily convex iff it is convex in the ori-

dinary sense. Indeed, if v is into {0,1}, the condition

i(R)kI(P)A1J(Q) is vacuous unless j(P) = ij(Q) = 1, and it

then requires that p(R) = 1; in other words, if P,Q are in

p, it requires that any point on the segment PQ also be in

p, which is the standard definition of convexity.

A real-valued function f defined on the real line will

be called min-free if, for all points AsBrC, we have f(B) a

f(A)Af(C). Thus a fuzzy set P is convex iff all its cross-

sections are min-free functions. In Sections 2.2-3 we will

consider under what circumstances the projections of (fuzzily)

convex sets are min-free functions. Note that a fuzzy sub-

set of te real line is convex iff, regarded as a real-valued

function, it is min-free.
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For any Ost.%1, the set Ut {PEEIP~(P)>t) will be called

a level set of .

Proposition 1. pi is convex if f its level sets are all

convex. (We regard the empty set as convex.)

Proof: ii(P) and P(Q)> t require p~(R)>t for all REPO-, making

Wconvex. Conversely, given any P,Q and any REPO, suppose,

p(R)<1i(P)AIJ(Q), and let t = ii(R); then iu(P)>t and pi(Q)>t,

so that ptis not convex./!

Readily, the proposition is also true if we define "level set"

using z instead of >.



2.2 The sup projection

For any line Z and any point PEE, let 2 be the line

perpendicular to I at P. By the sup projection of a fuzzy

set p on k we mean the function p that maps each point PEZ

into sup {f1(Q)IQEp.rP Evidently U Z is a fuzzy subset of Z,

since 0&pI!l, and if p is an ordinary set, so is u£ for all Z.

It is easily seen that if p is a connected set, p. is an

interval. (Indeed, given any P,QEu,9. , there must exist points

of p on k and k ; since p is connected, there is a path in

pi joining these points, and readily the sup projection of this

path must contain the interval PQ.)

Proposition 2. If p is convex, so is 1.

Proof: Let A,B,C (in that order) be points of Z. Given any

e>O, let A' and C' be points on £A and £C' respectively, such

that 11 (A)<u(A')+c and p (C)<P(C')+E. Let B' be the inter-

section of segment A'C' with 9B. Since p is convex

and B'EA'C', we have

1i (B')a1i(A')AJ(C') = [1£ (A)-CIA 11Z(C)-E] = [li (A)A £ (C)]-C

But 1 (B') 11(B) by definition of the sup projection. Hence

U (B)a[I (A)A£ (C)]-e, and since e is arbitrary, we have

lit (B) Z19. (A) A 19 (C), proving p k convex.//

.4q

The converse of Proposition 2 is false; even if all the

sup projections of 1 are convex, V need not be convex. To
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see this, let p be an ordinary set and suppose that

is connected. By the remarks preceding Proposition 2,

the sup projection of p on any X is an interval, hence

is convex, but p itself need not be convex.
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2.3 The integral projection

By the integral projection of p on X we mean the

function 1p that maps each point PEL into fp, the
ip

integral of P over the line ip perpendicular to I at P.

Note that if p is an ordinary convex set, £p meets p in

an interval, and f is just the length of this interval.

We assume here that this integral always exists. Note that

we no longer have 05ui1l, as we did in the case of the

sup projection.

Proposition 3. If p is a convex set, v£ is a min-free

function.

Proof: Let A,B,C, (in that order) be points of £. Each of

the lines kA'B''C meets the convex set p in an interval

(possibly degenerate or empty);

let the endpoints of these intervals be A',A",B',B", and

C',C", respectively (see Figure 1).

Since p is convex, the segments A'C' and A"C" are subsets of

P; hence the points P,Q where these segments meet ZB are in

* . , and lie between B' and B". Now evidently min(IA'A"I,iC'C"I)5

IPQIJmax(iA'A"lIC'C"I), where bars denote the length of an

interval. But IA'A"I=1i(A) and IC'C"I=1I 2 (C), as pointed out

A in the preceding paragraph. Hence pJk(B)=IB'B"IJaPQIJmin(iA'A"I,

IC'C"I)= lt(A)A I(C), proving that p is min-free.//
4

Unfortunately, Proposition 3 is false if v is only

jassumed to be fuzzily convex. To see this, let U be defined



as follows: j = 0.1 in the quadrilateral whose vertices

are (0,0),(0,10), (9,0), and (9,1); except that ji= 0.9 on

the line segment (9,0),(9,1) (see Figure 2). Since the

level sets of P are convex, P is fuzzily convex (see

Section 2.1). Fut for the integral projection of p on

the x-axis we have I±(0) = 10, p(9) = 9, while 11(5) = 5,

so that w is not a min-free function.

The converse of Proposition 3 is also false; even

if all the integral projections of v are min-free functions,

is not necessarily convex. In fact, consider the L-shaped

polygon TI whose vertices are (0,0),(0,2),(2,0),(1,2),(1,1), and

(2,1) (see Figure 3), and project IT onto an arbitrary line 9.

(Figure 4). It is evident that the value of this projection v

has no strict local minimum (see Figure 4: it strictly

increases from P1 to P2 ' remains constant from P to P
1 2 2 3'

strictly decreases from P3 to P4 ' remains constant from P4

to P5' and strictly decreases from P5 to P6 ), hence is a

min-free function, but H, of course, is not convex.
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3. Fuzzy digital convexity

3.1 Digital convexity (2]

Let R be a subset of the plane such that (R0 )=R

(R is the closure of its interior); we call such an R

regular. Let us regard each lattice point P as the center

of an open unit square (a "cell")P*. The set I(R):{PRnP*#0}

is called the digital image of R. Note that we have not

defined the digital image for arbitrary sets, but only

for regular sets.

Proposition 4. RU {P*IPEI(R)}, and I(R) is the smallest

set of lattice points for which this is true.

Proof: By definition of I(R), R meets Q* iff QEI(R); and

if R meets any Q* on its boundary, it meets the interior of

at least one of the cells that share that boundary.//

A set of S of lattice points is called digitally convex

if it is the digital image of a convex regular set R.

Proposition 5. A digitally convex set is 4-connected.

* Proof: We show that the diqital imaqe S of any arcwise connected

regular set R is 4-connected. For all P,QES, R meets P* and

Q*, say in the points (x,y) and (u,v), and there is a path

in R from (x,y) to (u,v). It is easily seen that this path

meets a sequence of interiors of 4-adjacent cells which

thus yield a 4-path in S from P to Q.//
/
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The proofs of the following two theorems can be

tfound in 121.

Theorem 6. The following properties of a 4-connected

set S are equivalent:

2(a) For all P,Q, in S, no point not in S lies on the line

segment P-Q

(b) For all P,Q, in S, and all (u,v)EPQ, there exists

a point (x,y)ES such that max (Ix-uI,jy-vI)<l.//

We call S regular if every PES has at least two (hori-

zontal or vertical) neighborsin S.

Theorem 7. Any digitally convex set has the properties of

Theorem 6. A regular set S is digitallyconvex iff it has

the properties of Theorem E.//

If S is not regular, it may satisfy the properties of

Theorem 6 but not have a convex preimage.

In Section 3.2 we discuss the possibility of generaliz-

ing these results to fuzzily convex sets.
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3.2 Fuzzy digital convexity

Given a fuzzy subset p of the plane, we define a

fuzzy subset p' of the lattice points by

p'(P)Esup{v(x,y)j (x,y)EP*}

Proposition 8. If Pt is regular, pt is its digital image.

Proof: pt meets P* iff sup{f(x,y)I (x,y)EP*}>t iff P'(P)>t iff

PEUt.

The corresponding statement is not true if we use a rather

than > in defining level sets. Indeed, if such a level set

Pt meets P*, we have sup {I(x,y)l(x,y)EP*}>t, so that p'(P).t

and PEP' ; but conversely, if the sup-t, Pt may only meet P*
t

(though it does have to meet the interior of some cell that

shares its border with P*, if p t is regular). Thus we know

only that if p t is regular pt contains its digital image.

Corollary 9. If p is an ordinary regular set, u' is its

digital image.

Proof: p=p 0 is regular, hence p6 =P' is its digital image.

We call P fuzzily regular if all its level sets Pt are re-

gular, 0.t<l. If p is fuzzily regular, we call p' its

digital image.

We call p' fuzzily digitally convex (FDC) if it is the

digital image of a fuzzily regular, fuzzily convex p.
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Analogous to Proposition 1 we then have

Proposition 11. If pi' is FDC, all its level sets are

digitally convex.

Proof: Every Vl is the digital image of Pt (Proposition

8), which is convex (Proposition 1).//

Analogous to Condition (a) in Theorem 6, we have

Proposition 12. If p' is FDC, then for all collinear triples

of lattice points A,B,C, with B between A and C, we have

i'(B) Zi' (A) A 11' (C) .

Proof: Given any c>O, let A',C' be points of the cell

interiors A*,C* such that ~()('+,I()IC)E

where pI).Evidently, KM-C'l meets the cell interior B*;

let B' be a point of B*flAIC'. Since p~ is fuzzily convex,

we have (B) ()AiC)(IA))AV'C-)1IAA1')-E

Since vi'(B) = sup{~i(x,y)( (x,yEB*}z p.(B'), we thus have P'(B)>

, .(A)A-P(C)-E-; and since r- is arbitrary, it follows that

wi (B) zp.'(A) A .i (C).
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